Complexity Explorer Santa Few Institute



Mathematics of Complexity and Dynamical Systems

Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. They are therefore adaptive as they evolve and may contain self-driving feedback loops. Thus, complex systems are much more than a sum of their parts. Complex systems are often characterized as having extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The conclusion is that a reductionist (bottom-up) approach is often an incomplete description of a phenomenon. This recognition, that the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the individual components, has led to many new concepts and sophisticated mathematical and modeling tools for application to many scientific, engineering, and societal issues that can be adequately described only in terms of complexity and complex systems.

R. Meyers
Fractals, Nonlinear Dynamics, Dynamical Systems, Chaos, Complex Systems